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Abstract:  The present comparative investigation unfolds the impacts of the soret mechanism, and generalized Fourier’s law 

among other flow parameters on non-Newtonian fluids flow over a nonlinear stretching surface. The compared two 

non-Newtonian fluids herein include Williamson and Casson fluids, with the imposition of the magnetic field, 

inclination angle, radiation, soret, dissipation, Joule heat, and the assumption of the non-Fourier’s concept. We 

utilized the appropriate similarity variables on the controlling flow PDEs models to obtain the required ODEs 

equations. The resulting ODEs systems are then solved numerically via the implementation of the collocation 

method with legendary polynomial as the basis function. In a limiting case, the model is in line with the earlier 

studies. The results herein identified that the Casson fluid possesses higher material conductivity than the 

Williamson fluid. The soret mechanism elevates the fluids flows, energy distributions, and fluid concentration 

significantly. Moreover, material with higher relaxation time signifies a lesser energy and velocity disposition 

throughout the entire medium. Other invaluable results are presented in the respective tables and graphs. 

Keywords:  Cattaneo-Christov, Casson fluid, Williamson Fluid, Soret phenomenon, Nonlinear Convection. 

 
 

 

 

Introduction 

Fluids like; water, blood, honey, mayonnaise, toothpaste, gels, 

ketchup, and consolidated milk are grouped into Newtonian 

and non-Newtonian classifications. With no gain saying, this 

fluid possesses different chemical and physical properties, 

thus making it difficult to represent these fluids with a single 

rheological model. Amid their usage, importance, and 

applications to engineers, scientists, and biomedical systems, 

this study finds it necessary to investigate numerically the 

comparative study of Williamson-Casson fluid flow over a 

nonlinearly stretching sheet with generalized Fourier’s law 

and soret mechanism. 

To this, authors like; Sarkar et al (2019) had enumerated the 

impact of magnetization, radiation, and chemical reaction over 

an inclined cylindrical plane. The simulation was conducted 

with the compact visualized FORTRAN algorithm, they 

deduced that heat and mass transfer distribution of 

Williamson fluid is lower in contrast to the Casson fluid. With 

dual heat flux over a heated stretchy sheet, Sivanandam and 

Eswaramoorthi (2019) examined the second law analysis of 

Casson-Williamson fluid, thus identifying that rise in Casson 

and Williamson numbers declined the impact of entropy 

generation rate. Investigation of cross-diffusion effect on 

Casson-Willamson is carried out by Bhuvaneswari et al. 

(2019), the study considered chemical reaction and radiation 

effect over a stretching sheet and highlighted the aggregation 

of concentration profile as Doufor number is enhanced. The 

stagnation point flow of Casson-Willamson fluid past an 

extended cylinder by Kumar et al. (2019) discusses the impact 

of a new heat flux model. The study employed the fourth 

order Runge-Kutta-based shooting system, and conclude that 

curvature parameter and thermal stratification tend to increase 

both energy and momentum field significantly. Recently 

Akolade and Tijani (2021) employed the spectral quasi-

linearization method (SQLM) in the solution of the 

comparative examination of Casson-Willamson fluid in three-

dimensional space. The study enumerated that lesser diffusion 

enhancement is observed in the case of Casson fluid compared 

to the Williamson fluid, to mention but a few out of the 

numerous studies. 

To predict the warmth transfer across the flow vicinity 

correctly, for great utility in biomedical, engineering, cooling, 

and drug industries, Cattaneo (1948) opined that Fourier’s law 

(1822) contradicts the concept of reality; therefore proposed a 

modified heat flux model which can address the relaxation 

time enhancement. This change become advanced by Christov 

(2009), thus named the model as Cattaneo-Christov. 

Eversince, several investigation of this concenpt on fluid 

rheology and geometrical surface have been recordrd. The 

contradiction surrounding Fourier’s law of heat conduction 

and the idea of relativity was highlighted by Marin (2011). 

Akolade et al. (2021a) carried out the study of soret-Dufour 

with the implementation of the modified model on Casson 

fluid. Investigation of the modified flux model over a 

stretching surface with variable thickness was studied by 

Hayat et al. (2015). The analysis was conducted under the 

assumption of Maxwell fluid, they concluded that energy 

distribution is higher in the case of Fourier’s law than in the 

modified heat flux model. Over a stretched cylinder filled 

with dust phase, Graphene, and silver nanoparticles, Upadhya 

et al. (2018) presented the modified Fourier heat flux on 

MHD flow over stretched cylinder filled with dust, Graphene, 

and silver nanoparticles. Their results signified that 

enhancement in thermal relaxation promotes energy profiles 

in both fluid and dust phase. Examination in porous 

stretching/shrinking sheet through a three-dimensional system 

is presented by Vishalakshi et al (2022), the investigation 

considered both heat and mass modified fluid. 

The flow of non-Newtonian fluids over a nonlinearly 

stretching sheet had received great attention owing to its rich 

applicability in manufacturing industries, and engineering. 

Typical examples of boundary layer flow over a nonlinearly 

stretching sheet occur in areas like the production of glass 

fiber, coolant, etc (Devi and Prakash, 2016). Recent literature 

on this concept include the work of Oke et al. (2021), Idowu 

et al. (2021), Olabode et al (2021), and many others. This 

current comparative examination of soret mechanism, 

generalized Fourier’s law, nonlinear convection, and variable 

electrical conductivity over a nonlinearly stretching sheet is 

believed far-fetched in the literature to authous best 

knowledge, hence, the study. 

 

Model Formulation 

Under the condition of the generalized heat flux model, this 

comparative study of two-dimensional flow Williamson-

Casson fluid is assumed to be steady and incompressible on 

an inclined surface. Abolishing the regular assumption of 

Boussinesq approximation, the quadratic solution and thermal 
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convection are enumerated. Alongside the dissipation effect, 

the velocity slip and temperature jump impact is also 

considered. With applied MHD

1

2
0( ) =  ( 1)

m

B x B x m



, 

and 0 0= mU d x
 being the stretching characteristics, and 

1

0= m

ih d x 

 the material time relaxation rate, In Figure 1, 

displayed the induced along x axis  and 
y axis

 

perpendicular to it.  

 

 
Figure 1: Flow model configuration. 

 

Introducing the Rosseland approximation heat flux defined by (see Akolade et al. 2021b, Akolade and Tijani 2021):  
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Accounting for the adherence between the solid boundaries and the flowing fluid, we have the velocity slip ( slipU
) and 

temperature jump ( slipT
).  

 

2
2

2

2 22 2 ( 1)
= ,

1 1 4 (2 )

e e e
slip

e e e

r r T r r r Pr T
T

Kn r y Kn r r y

   

  

       
     

          (2) 

 

2 2 2
4 2 2

2 2

32 3 1 2
= [ ( ) ( (1 )) ],

3 2

m
slip

m

J J u u
U r J J r

Kn y Kn y


 

 

   
   

 
 (3) 

 

2 2

1 2 1 22 2
= ,        = [ ],slip slip

T T u u
T b b U a a

y y y y





   
 

   
 (4) 

Subjected to the assumptions above, the momentum, energy continuity, and concentration equations of Williamson-Casson 

dissipative fluid are given by;  
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Subject to the second order slip and temperature jump conditions (Titiloye et al. 2021):  
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Where u  and v  denotes the velocity along x  and 
y

- axis respectively, ih
 is the relaxation constant,   is the viscosity, 


 

is the Casson,   signifies electrical conductivity, 0B
 signifies magnetic constant, 


 signifies density, 

T  signifies the 

temperature at the free stream, T  signifies temperature,   is the incline angle,   signifies thermal conductivity, 0  is the 

Williamson time constant pc
 signifies heat capacity, qD

 signifies mass diffusivity, C signifies concentration, TD
 signifies 

thermophoretic diffusion coefficient, 


 signifies coefficient of viscosity, rq
 signifies radiative heat flux, 1 2,b b

 and 1 2,a a
 

signifies slip terms respectively. 

Implementing the similarity variables below, Akolade et al. 2021a, Idowu et al. 2020;  
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Applying equation 
(5)

 on equations 
(6)

 - 
(10)

, the resulting ODE systems becomes;  
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  represent the dimensionless thermal relaxation, Gc  Grashof number for concentration, Gr  Grashof number for 

temperature, Ec  Eckert number, Ha  dimensionless magnetic field parameter, 1  nonlinear thermal expansion coefficient, 

3  nonlinear concentration expansion coefficient, Pr  Prandtl number, Sc  Schmidt number, Sr  Soret number, 1  Casson 

parameter, 2  Williamson parameter, Nr  Radiation parameter, and 1,2S
, 1,2,3,4

 are slip and jump factors. 
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Equations 
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 - 
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 are in the domain 
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The flow characteristics namely the Skin friction, Nusselt number, and the Sherwood number are given as thus;  
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Method of Solution 

To establish the approximate solution of the governing ODEs in equation (16) - (19) which the closed form solution is far easily 

obtained, we employed the collocation technique with Legendre polynomial basis function, for detail see Oyekunle et al. 2021; 

Akolade et al. 2022. 

Implementation of Legendre-based Collocation Method 
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n n n n n n

n n n

m d
a W a W c W

L m d L L


  




           
                        

  
 (26) 
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 
=0 =0 =0 ===

2 2
1 = 0, 1 = 0,   2 1 = 0.

N N N

n n n n n n

n n n LLL

d
a W b W c W

d L L


 




        
          

       
  

 (27) 

 

Substituting equations 
(23)

 into equations 
(12) (15)

, residues 
( , , , ),f n n nR a b c

   2
( , , , )g n n nR a b c

, and 

( , , , )h n n nR a b c
 are derived. 

With the following steps the residues are minimized closed to zero;  

 
1, =

for  =
0, ,

j

j
otherwise

 
  


 

  (28) 

   

   

   

0

0

0

= , , , = 0, = 1, 2,.. 1,

= , , , = 0, = 1, 2,.. 2

= , , , = 0, = 1, 2,.. 1,

L

h j h j n n n

L

f j f j n n n

L

g j g j n n n

R d R a b c for j N

R d R a b c for j N

R d R a b c for j N

    

    

    

 

 

 






 (29) 

Where 

1
= 1

2
j

j
cos

N




  
   

    is the shifted Gauss-Lobatto points? 

In this procedure, 3N by 3 unknown coefficients with 3N+3 algebraic equations with 3N+3 algebraic equations are obtained. 

With the help of the MATHEMATICA symbolic package, a collocation is set and NSolve is used to obtain the roots.  

= 1, 2 1 = 0,collocationpoints NSolve Expand LegendreW N
L




   
    

     (30) 

Results and Discussion 

The flow, energy, and concentration profiles for distinct 

behavior of the distribution parameters are profiled and 

discussed. For the record, the following parameters are 

maintained constant throughout the computation else 

otherwise stated = = =1.0Ha Gr Gc , 1 3= = 0.5 
, 

2 = 0.2
, 2 = 0.5h

, 4 = 0.2h
, 1 = 0.2h

, 3 = 0.2h
, 

4 = 0.1
, = 0.1Ec , = 0.3Sr . Momentum, 

temperature, concentration, skin-friction, Nusset number, and 

Sherwood number behavior, performance, and 

characterization on the Williamson-Casson fluid flow through 

an inclined geometry is presented in this section. The record 

in Table 1 elucidates the performance of the Legendre-based 

collocation method with the earlier studies of Devi and 

Prakash (2016), and Sharma and Shaw (2022), evidently, the 

results herein are in good agreement with the works in the 

literature. Graphically Figures 2 - 9 highlight the impacts of 

the flow pertinent parameters on the flow, energy, 

concentration, and characteristics profiles. 

Figure 2 unavailing the action of the imposed Lorentz force 

acting against the flow surface indicated that higher 

magnetization drag down the flow field but positively 

enhanced the temperature of the fluid and concentration. Due 

to a reduction in fluid momentum force pictured in figure 2(a-

c), a rise in Ha  further identified that Williamson fluid 

conduct lower heat energy and is easily dragged down but 

maintains higher concentration than the Casson fluid. The 

impacts of the modified heat flux ( ), also called non-

Fourier’s law (Cattaneo-Christov) are presented in figure 3. 

Figure 3(a) enumerated the little impact of relaxation time on 

the velocity field on the wall and figure 3(b) clarifies its 

significant influence on the temperature field. A reduction in 

the fluid temperature is experienced in the entire flow domain, 

thus indicating more time will be needed for successful heat 

transport in the considered geometry. Meanwhile, Williamson 

fluid shows a faster temperature reduction than the Casson 

fluid in the flow medium, but a contrary effect is seen on the 

fluid flow surface. This is attributed to the non-newtonian 

fluid chemical properties of the two fluids. 

Soret (thermal-diffusion) being the mass fluxes generated by 

the heat energy gradient is seen accelerating the fluid 

momentum, and concentration significantly as the parameter 

Sr  increases. The impact gave little effect on the 

temperature profiles. Concurrently, figure 5 profiled an 

increasing behavior to a higher magnitude of radiation number 

(Nr). The behavior indicated that both fluids gave the 

accelerating behavior. This result on the profile 
( )g 

 is not 

far-fetched since Nr  is radiative heat energy, thus, the 

energy profile is set to magnify for a rising Nr . Response of 

the internally generated heat on the velocity, temperature, and 

concentration distributions for both non-Newtonian fluids are 

showcased in figure 6. Mathematically, Ec  represent the 

ratio of the change in enthalpy difference. The heat generated 

tend to reduce both fluid momentum and concentration close 

to the boundary surface, but energized all three profiles 

positively at the boundary layer region (see Figure 6 a-c). 

The behavior of the thermal Grashof coefficient 
( )Gr

 and 

solutal Grashof coefficient 
( )Gc

 on the velocity, 

temperature, and concentration distributions are enumerated in 

figures 7(a-c) and 8(a-c) respectively. These terms 

( , )Gr Gc
 are characterized by the temperature and 

concentration variation difference due to the buoyancy effect. 

A rise in corresponding fluid flow of both Casson and 

Williamson fluid for greater values of Gr  and Gc  is 

profiled in figures 7(a) and 8(a) respectively. However, a 

corresponding decrease in concentration distribution is 
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recorded in Figures 7(c) and 8(c) accordingly as Gr  and 

Gc  upsurge. On the other hand, energy transfer of both 

Casson and Williamson fluid resulted in an opposite 

characterization as seen in Figures 7(b) and 8(b). Therein, a 

rise of Gr  and Gc  increases the temperature of Casson 

fluid but diminished the temperature of Williamson fluid. 

Physically, this result may be attributed to the lower heat 

enhancement of Williamson fluid compared to the Casson 

fluid. 

Moreover, the fluid flow and heat transfer engineering of 

interest is depicted in figure 9 for both impact of the material 

relaxation time   and the magnetic field effect Ha . Figure 

9(a) elucidates that the skin friction increases as Ha  grows, 

and skin friction decreases as the time relaxation number 

grows. On the same note, the Nusset number (heat transfer 

coefficient) decreases as the time relaxation number and the 

Hartman number magnifies. 

 

Conclusion 

So far, the impact of soret, modified hat flux, magnetization, 

convection, dissipation, and radiation have been enumerated 

in the comparative and numerical investigation of 

Williamson-Casson fluid flow over an inclined slendering 

surface. The study adopted a well-posed similarity variable to 

convert the governing systems of PDEs into ODE equations 

and then solved numerically via the novel Legendre-based 

collocation method. The provided table authenticates the 

performance of the imposed method. The following 

conclusions were drawn: 

 The magnetization effect 
( )Ha

 slows down the 

momentum but energized the temperate and the 

solutal field. 

 The relaxation parameter signified that more time 

will be needed for successive heat transfer in both 

fluid models, thus reducing the flow velocity of the 

wall surface. 

 Williamson fluid possessed lower heat enhancement 

compared to the Casson fluid. 

 The Soret mechanism promotes the velocity, 

temperature, and concentration fields. 

 Radiation numbers upsurge the temperature field 

significantly. 

 A rise in Ha  decreased the Nusset number, but 

magnified the skin friction. 

Table  1: Comparison of results of Skin friction coefficient heat transfer rate.   

Value  
 

(0)f 
  

Value  
 

(0)g
 such that 1 = = 0

  

1   
 


  
 Devi & Prakash (2016)   Present work  

 Pr   
 Sharma & Shaw (2022)  Present work  

0.0   0.2   0.9248281   0.924821298  0.2 0.16631332   0.17003133 

0.2   0.25   0.7333949   0.733385610   0.7   0.45540012   0.45391747 

0.2 0.3          0.738594316  2.0 0.91102381  0.91135768 

0.2 0.5 0.7595701  0.759562561  7.0 1.89432002  1.89431426 

0.5 0.5          0.578436131  20  3.35045413  3.35065976 

0.5 0.6          0.584199971  70 6.46010020  6.46011132 

 

   
(a)                                                                                   (b)                                                          (c) 

Figure  2: Impact of magnetization on (a) ( )f  , (b) ( )g  , and (c) ( )h  . 

 

(a)                                                        (b) 

Figure  3: Impact of Relaxation time on (a) ( )f  , and (b) ( )g  . 
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(a)                                                                                 (b)                                                  (c) 

Figure  4: Impact of Soret number on (a) ( )f  , (b) ( )g  , and (c) ( )h  . 

 

Figure  5: Impact of Radiation on (a) 
( )g 

. 

  
(a)                                                                                   (b)                                                          (c) 

Figure  6: Impact of Eckert number on (a) ( )f  , (b) ( )g  , and (c) ( )h  . 

 

(a)                                                                                 (b)                                                  (c) 

Figure  7: Impact of thermal convection number on (a) ( )f  , (b) ( )g  , and (c) ( )h  . 
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(a)                                                                                (b)                                                  (c) 

Figure  8: Impact of solutal convection number on (a) ( )f  , (b) ( )g  , and (c) ( )h  .   

 

(a)                                                                                (b) 

Figure  9: Impact of some flow parameters on (a) Skin friction, and (b) Nusset number. 
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